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I want to explore 
some pop music!
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Introduction

[4]

I want to start my 
exploration directly from 
the new genre “pop”!

• Traditional recommender system
• Predicting users’ current preference

• How recommender system could help users with direct 
explorations from new music genres/tastes?
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Recommendation methods

1. Recommend genre-typical tracks (representative) 
• The non-personalized method 

2. Take into account users’ current preferences (accurate and personalized) 
• The personalized method

3. Balance accuracy and representativeness
• The mixed method

[5]
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Research question

• Can we give more helpful recommendations than the genre-typical tracks from the
non-personalized baseline?

• Personalized method (accurate and personalized recommendations)
• Mixed method (trade-off between accuracy and representativeness)

[6]
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Content-based recommendation on audio features

[7]

• The recommendation is done in a content-based way by matching in terms of high-level
audio features.

• Users’ current preferences and genre space are represented by semantic audio features
(acousticness, energy, valence, speechiness, liveness and danceability) retrieved from
Spotify.

https://developer.spotify.com/documentation/web-api/

I am a fan of classical music and I 
prefer songs with low valence!

https://developer.spotify.com/documentation/web-api/
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low energy low valence

The personalized method

[8]

User Music Preference
• Model the user’s music preferences with their top

listened tracks from Spotify by Gaussian Mixture
Model (GMM) in each feature dimension

Example music profile of a user

acousticness speechiness

danceabiltiy liveness

energy valence

high acousticness
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low energy low valence

candidate track1 candidate track2

The personalized method

[9]

Music Preference Modeling
• Model the user’s music preferences with their top

listened tracks from Spotify by Gaussian Mixture
Model (GMM) in each feature dimension

During recommendation
• In each feature dimension:

• Map the candidate tracks from the 
recommendation dataset against the user model

acousticness speechiness

danceabiltiy liveness

energy valence

high acousticness

Example music profile of a user
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low energy low valence

candidate track1 candidate track2

The personalized method

[10]

Music Preference Modeling
• Model the user’s music preferences with their top

listened tracks from Spotify by Gaussian Mixture
Model (GMM) in each feature dimension

During recommendation
• In each feature dimension:

• Map the candidate tracks from the 
recommendation dataset against the user model

• Get a ranked list based on the matching scores

ranking track

1 track1

2 track2

ranking track

1 track2

2 track1

acousticness speechiness

danceabiltiy liveness

energy valence

high acousticness

Example music profile of a user
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low energy low valence

candidate track1 candidate track2

The personalized method

[11]

Music Preference Modeling
• Model the user’s music preferences with their top

listened tracks from Spotify by Gaussian Mixture
Model (GMM) in each feature dimension

During recommendation
• In each feature dimension:

• Map the candidate tracks from the 
recommendation dataset against the user model

• Get a ranked list based on the matching scores
• Aggregate rankings from all feature dimensions and 

recommend the top 10 with the lowest ranking  

ranking track

1 track1

2 track2

ranking track

1 track2

2 track1

acousticness speechiness

danceabiltiy liveness

energy valence

high acousticness

Example music profile of a user
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The non-personalized method

[12]

Genre-typical profile
• Model genre-typical profile with the tracks from the

genre highlighted artists

ranking track

1 track2

2 track1

acousticness speechiness

danceabiltiy liveness

energy valence

candidate track1 candidate track2
Example genre profile: RAP
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The mixed method

[13]

• Aggregate rankings from both personalized method and non-personalized method 
(weight=0.5)

• 𝑠𝑐𝑜𝑟𝑒!"# = 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑛 − 𝑟$%&'()*+ + 1) + 1 − 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑛 − 𝑟,*'%+")% + 1)
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Online study 

[14]

Consent forms

Login with Spotify Account

Fill in the survey for Musical 
Sophistication

Select a music genre to 
explore

Recommendations from 
different methods

Daniel Müllensiefen, Bruno Gingras, Jason Musil, and Lauren Stewart. 2014. The 
musicality of non-musicians: an index for assessing musical sophisGcaGon in the 
general populaGon. PloS one 9, 2 (2014), e89642. 
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Genre dataset

• Retrieved genre highlighted artists from 
Allmusic.com

• Extended the dataset with Spotify API

[15]
Highlighted artist from genre “rap” retrieved from 
allmusic.com (https://www.allmusic.com/genres) 

https://www.allmusic.com/genres
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Online experiment 
RQ: Can we give more helpful recommendations than the genre-typical tracks from the non-
personalized baseline?

Comparative design
• Compare baseline with the personalized method
• Compare baseline with the mixed method.

• 156 validate response (78 females and 78 males)

[16]

Michael D Ekstrand, F Maxwell Harper, Martijn C Willemsen, and Joseph A Konstan. 
2014. User perception of differences in recommender algorithms. In Proceedings of the 
8th ACM Conference on Recommender systems. ACM, 161–168. 
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[17]
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[18]
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Results - Structural Equational Model 

[19]

MSAE: Musical Sophistication 
Score for Active Engagement

Arrows represent the standardized coefficients with 
standard error between brackets and p-values. 

Bart P Knijnenburg, Martijn C Willemsen, Zeno Gantner, Hakan Soncu, and Chris 
Newell. 2012. Explaining the user experience of recommender systems. User 
Modeling and User-Adapted Interaction 22, 4-5 (2012), 441–504.
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Results - Structural Equational Model 

[20]

MSAE: Musical Sophistication 
Score for Active Engagement

Arrows represent the standardized coefficients with 
standard error between brackets and p-values. 
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Results - Structural Equational Model 

[21]

MSAE: Musical Sophistication 
Score for Active Engagement

Arrows represent the standardized coefficients with 
standard error between brackets and p-values. 
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Results - Absolute difference

[22]

The recommendations from the baseline method are perceived more representative
than the personalized method, but less representative than the mixed method

The error bars represent the 95% confidence interval 
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Results - Absolute difference

[23]

The recommendations from both personalized and the mixed method are perceived 
more accurate than those from the baseline 

The error bars represent the 95% confidence interval 
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Which method is more helpful?

[24]

Users with high MSAE perceived the mixed method to be more helpful than the purely
personalized method

The error bars represent the 95% confidence interval 

MSAE: Musical Sophistication 
Score for Active Engagement
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Conclusions and Future work

[25]

• In general, we found that both methods (the personalized and the mixed) are not 
perceived more helpful than the baseline.

• Perceived helpfulness is positively related to both perceived accuracy and 
representativeness 

• Users with high MSAE perceived the mixed method to be more helpful
• balance the perceived accuracy and representativeness 
• provide different methods for users with different musical expertise

• Follow up (more interaction and understandability)
• Visualization (improve perceived understandability)
• Addition of mood control (improve perceived control)
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[26]

Thanks! Q & A?


