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WHAT IS COMMITMENT?

➤ Any sentence in email

➤ where the sender is promising to do an action which can potentially be added to his/her TO-DO 
list (eg. sending a document) 

➤ can be worthy of a reminder (e.g. meeting a colleague)
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WHY COMMITMENT DETECTION IS IMPORTANT?

➤ People use emails not only as a communication tool, but also as a means to 
create and manage tasks

➤ Automatic task management systems can assist users manage their tasks more 
efficiently

➤ Commitments are often hidden in emails and users struggle to recall and 
complete them in a timely manner
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COMMITMENT DETECTION

➤ Commitment detection is a challenging task

Challenge1: There is no publicly available large-enough dataset for this task

Challenge2: There is a domain bias associated with email datasets
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DATASETS

➤ We crowd-source a set of samples from Enron and Avocado and collect 
commitment labels

The most informative Enron features regarding the positive class

The statistics of commitment datasets
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CAN COMMITMENTS BE RELIABLY DETECTED?

➤ In-domain performance of a logistic regression classifier

➤ Task

➤ Binary classification

➤ Classify if the sample constitutes any commitment

➤ Features: word n-grams

The commitment model achieves a reasonable performance
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PERFORMANCE OF COMMITMENT MODELS ACROSS DOMAINS

➤ Performance of commitment models degrade significantly when moving across 
domains

➤ We cannot reliably train a model in one domain and use it to detect 
commitments on a different domain
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DOMAIN BIAS IN EMAIL DATASETS AND MODELS

➤ Most email-based models are derived from public datasets, which are skewed in 
a variety of ways 

➤ different organizations with very different and specific focus areas

➤ being old and adding an element of obsolescence

➤ different named entities and technical jargon

Our goal: Using transfer learning for transferring knowledge learned in one domain 
to other domains and achieve more robust and generalizable models for 
commitment extraction
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DETECTING COMMITMENTS ACROSS DOMAINS

➤ Feature-level transfer learning 

➤ Feature selection

➤ Feature mapping

➤ Sample-level transfer learning

➤ Importance sampling

➤ Deep autoencoder
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DEEP AUTOENCODERS: OBJECTIVE

➤ Goal: to achieve a domain independent representation for samples optimized 
for the commitment detection task

➤ Objectives

➤ Achieve a good representation for samples: the representation should capture the core and 
essential parts of the input sample

➤ Conventional reconstruction loss

➤ Achieve a good performance in commitment detection task

➤ Commitment classification loss

➤ Remove domain bias

➤ Domain loss
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DEEP AUTOENCODERS: ARCHITECTURE OVERVIEW
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AUTOENCODER RESULTS

➤ Proposed AE outperforms IS method significantly over all datasets

➤ All loss functions contribute to the performance of the AE method
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CONCLUSIONS

➤ Commitments can be reliably detected in emails when models are trained and 
tested on a same domain (dataset). 

➤ However, their performance degrades when moving across domains

➤ Domain bias can have a big impact on the performance of commitment models 
and email models in general

➤ We can detect and characterize this bias from email datasets

➤ This characterization can be used for training reliable and generalizable 
commitment models
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CHARACTERIZING DIFFERENCES BETWEEN DOMAINS

The Precision-Recall curve of the 
domain classifier (predicting which 
domain the samples come from)
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The most informative unigram features indicating the Enron domain 



CHARACTERIZING DIFFERENCES BETWEEN DOMAINS

➤ Can we use the characterization between domains to train domain-independent 
commitment models?

➤ All transfer learning approaches improve the performance of LR model

➤ More improvements for Enron->Avocado

➤ Enron samples are more biased and domain specific
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AUTOENCODER RESULTS

➤ How much data does AE need in the target domain to achieve a good 
performance?
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